GAMLSS#
- class sknormod.gam.GAMLSS(mu_formula='y ~ 1', sigma_formula='~ 1', nu_formula='~ 1', tau_formula='~ 1')#
Generalized Additive Models for Location, Scale, and Shape (GAMLSS) implemented using the
mgcv
package in R.- Parameters:
- mu_formulastr, default=”y ~ 1”
The formula specifying the model for the mean response. It should be a valid formula according to R’s formula syntax.
- sigma_formulastr, default=”~ 1”
The formula specifying the model for the scale (standard deviation) of the response.
- nu_formulastr, default=”~ 1”
The formula specifying the model for the skewness of the response.
- tau_formulastr, default=”~ 1”
The formula specifying the model for the kurtosis of the response.
Examples
>>> from sknormod.gam import GAMLSS >>> import numpy as np >>> X = np.arange(100).reshape(100, 1) >>> y = np.random.normal(0, 1, 100) >>> gamlss = GAMLSS(mu_formula="y ~ 1", sigma_formula="~ 1", nu_formula="~ 1", tau_formula="~ 1") >>> gamlss.fit(X, y) GAMLSS()
- Attributes:
- fitted_model_R object
The fitted GAMLSS model obtained from R’s
mgcv
package.- _ppffunction
Function for calculating the percent point function (inverse of the cumulative distribution function) of the distribution.
- _cdffunction
Function for calculating the cumulative distribution function (CDF) of the distribution.
- _logpdffunction
Function for calculating the logarithm of the probability density function (PDF) of the distribution.
Methods
fit
(X, y)Fit the GAMLSS model.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict_distr_p
(X, p)Predict percentiles for given input samples.
Predict distribution parameters for given input samples.
score
(X, y)Compute the logarithmic score of the predicted distribution parameters against the true values.
set_params
(**params)Set the parameters of this estimator.
transform_to_p
(X, y)Transform target values to percentiles for given input samples.
transform_to_z
(X, y)Transform the target values to z-scores.
- fit(X, y)#
Fit the GAMLSS model.
- Parameters:
- Xarray-like or sparse matrix of shape (n_samples, n_features)
The input samples.
- yarray-like of shape (n_samples,)
The target values.
- Returns:
- selfobject
Fitted estimator.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- predict_distr_p(X, p)#
Predict percentiles for given input samples.
- Parameters:
- Xarray-like or sparse matrix of shape (n_samples, n_features)
The input samples.
- parray-like of shape (n,)
The percentiles to predict.
- Returns:
- percentileslist of arrays
Predicted percentiles for each sample.
- predict_distr_params(X)#
Predict distribution parameters for given input samples.
- Parameters:
- Xarray-like or sparse matrix of shape (n_samples, n_features)
The input samples.
- Returns:
- paramsarray-like of shape (n_samples, k)
Predicted distribution parameters where each row represents [mu, sigma, nu, tau]. ‘k’ depends on the number of formulas specified.
- score(X, y)#
Compute the logarithmic score of the predicted distribution parameters against the true values.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- transform_to_p(X, y)#
Transform target values to percentiles for given input samples.
- Parameters:
- Xarray-like or sparse matrix of shape (n_samples, n_features)
The input samples.
- yarray-like of shape (n_samples,)
The target values.
- Returns:
- parray-like of shape (n_samples,)
The percentiles corresponding to the target values.
- transform_to_z(X, y)#
Transform the target values to z-scores.